
IJSRSET162170 | Received: 01 February 2016 | Accepted: 08 February 2016 | January-February 2016 [(2)1: 275-281]

© 2016 IJSRSET | Volume 2 | Issue 1 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

275

Minimizing the Cost in the Communication between Different Node
by Using Combination of Droptail, TCP as Well as Congestion

Window Technique
Dr. Rajdev Tiwari, Prerna Trivedi

Department of Computer Science and Engineering, Noida Institute of Engineering & Technology, Uttar Pradesh, India

ABSTRACT

NS2 is a discrete event simulator for networking research, which works at the packet level. Here, we will be using

ns2 to simulate traffic congestion of TCP and UDP packets inside a network. NS2 is popularly used in the

simulation of routing and multicast protocols and is heavily used in ad-hoc networking research. ns2 supports

network protocols (TCP, UDP, HTTP, Routing algorithms, MAC) etc. for offering simulation results for wired and

wireless networks. When using TCP to transfer data the two most important factors are the TCP window size and

the round trip latency. This paper deals the effect that the size of the flow control window has on the throughput of a

TCP connection by using simulation parameters like-packet delay (sec), bandwidth, file-size (bytes) and to

implement network fed with TCP traffic and background traffic. The objective of this paper is to observe the

performance of TCP. Distributed Using simulations, this paper compares a number of techniques some novel and

some variations on known approaches for building random graphs and doing random node selection over those

graphs. Our focus is on practical criteria that can lead to a genuinely deployable toolkit that supports a wide range of

applications. These criteria include simplicity of operation, support for node heterogeneity, quality (uniformity) of

random selection, efficiency and scalability, load balance, and robustness. We show that all these criteria can be met,

and that while no approach is superior against all criteria, our novel approach broadly stands out as the best

approach. Networks are essential to the function of a modern society and the consequence of damages to a network

can be large. Assessing performance of a damaged network is an important step in network recovery and network

design. Connectivity, distance between nodes, and alternative routes are some of the key indicators of network

performance.

Keywords: Transmission Control Protocol, Protocol Operation, Congestion Control, Droptail Mechanism, Source Code.

I. INTRODUCTION

The Transmission Control Protocol (TCP) is a core

protocol of the Internet protocol suite. It originated in

the initial network implementation in which it

complemented the Internet Protocol (IP). Therefore, the

entire suite is commonly referred to as TCP/IP. TCP

provides reliable, ordered, and error-checked delivery of

a stream of octets between applications running on hosts

communicating over an IP network.[11] TCP is the

protocol that major Internet applications such as the

World Wide Web, email, remote administration and file

transfer rely on. Applications that do not require reliable

data stream service may use the User Datagram Protocol

(UDP), which provides a connectionless datagram

service that emphasizes reduced latency over

reliability.[12]

The Transmission Control Protocol provides a

communication service at an intermediate level between

an application program and the Internet Protocol. It

provides host-to-host connectivity at the Transport

Layer of the Internet model. An application does not

need to know the particular mechanisms for sending data

via a link to another host, such as the required packet

fragmentation on the transmission medium. At the

transport layer, the protocol handles all handshaking and

https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Reliability_%28computer_networking%29
https://en.wikipedia.org/wiki/Error_detection_and_correction
https://en.wikipedia.org/wiki/Octet_%28computing%29
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/Email
https://en.wikipedia.org/wiki/Remote_administration
https://en.wikipedia.org/wiki/File_transfer
https://en.wikipedia.org/wiki/File_transfer
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/Connectionless_communication
https://en.wikipedia.org/wiki/Datagram
https://en.wikipedia.org/wiki/Latency_%28engineering%29
https://en.wikipedia.org/wiki/Transport_Layer
https://en.wikipedia.org/wiki/Transport_Layer

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

276

transmission details and presents an abstraction of the

network connection to the application.[8]

At the lower levels of the protocol stack, due to network

congestion, traffic load balancing, or other unpredictable

network behavior, IP packets may be lost, duplicated, or

delivered out of order. TCP detects these problems,

requests retransmission of lost data, rearranges out-of-

order data, and even helps minimize network congestion

to reduce the occurrence of the other problems.[6] If the

data still remains undelivered, its source is notified of

this failure. Once the TCP receiver has reassembled the

sequence of octets originally transmitted, it passes them

to the receiving application. Thus, TCP abstracts the

application's communication from the underlying

networking details.

TCP is utilized extensively by many popular

applications carried on the Internet, including the World

Wide Web (WWW), E-mail, File Transfer Protocol,

Secure Shell, peer-to-peer file sharing, and many

streaming media applications.

TCP is optimized for accurate delivery rather than

timely delivery, and therefore, TCP sometimes incurs

relatively long delays (on the order of seconds) while

waiting for out-of-order messages or retransmissions of

lost messages. It is not particularly suitable for real-time

applications such as Voice over IP. For such

applications, protocols like the Real-time Transport

Protocol (RTP) running over the User Datagram

Protocol (UDP) are usually recommended instead.[2]

TCP is a reliable stream delivery service that guarantees

that all bytes received will be identical with bytes sent

and in the correct order. Since packet transfer over many

networks is not reliable, a technique known as positive

acknowledgment with retransmission is used to

guarantee reliability of packet transfers. This

fundamental technique requires the receiver to respond

with an acknowledgment message as it receives the data.

The sender keeps a record of each packet it sends. The

sender also maintains a timer from when the packet was

sent, and retransmits a packet if the timer expires before

the message has been acknowledged. The timer is

needed in case a packet gets lost or corrupted.[2]

While IP handles actual delivery of the data, TCP keeps

track of the individual units of data transmission, called

segments that a message is divided into for efficient

routing through the network. For example, when an

HTML file is sent from a web server,[9] the TCP

software layer of that server divides the sequence of

octets of the file into segments and forwards them

individually to the IP software layer (Internet Layer).

The Internet Layer encapsulates each TCP segment into

an IP packet by adding a header that includes (among

other data) the destination IP address. When the client

program on the destination computer receives them, the

TCP layer (Transport Layer) reassembles the

individual segments, and ensures they are correctly

ordered and error free as it streams them to an

application.

II. METHODS AND MATERIAL

A. Protocol Operation

TCP protocol operations may be divided into three

phases. Connections must be properly established in a

multi-step handshake process (connection establishment)

before entering the data transfer phase. After data

transmission is completed, the connection termination

closes established virtual circuits and releases all

allocated resources.[3]

A TCP connection is managed by an operating system

through a programming interface that represents the

local end-point for communications, the Internet socket.

During the lifetime of a TCP connection the local end-

point undergoes a series of state changes:[11]

LISTEN

(server) represents waiting for a connection

request from any remote TCP and port.

SYN-SENT

(client) represents waiting for a matching

connection request after having sent a

connection request.

SYN-RECEIVED

(server) represents waiting for a confirming

connection request acknowledgment after

having both received and sent a connection

request.

https://en.wikipedia.org/wiki/Packet_loss
https://en.wikipedia.org/wiki/Out-of-order_delivery
https://en.wikipedia.org/wiki/Retransmission_%28data_networks%29
https://en.wikipedia.org/wiki/Octet_%28computing%29
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/E-mail
https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/Secure_Shell
https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/File_sharing
https://en.wikipedia.org/wiki/Streaming_media
https://en.wikipedia.org/wiki/Voice_over_IP
https://en.wikipedia.org/wiki/Real-time_Transport_Protocol
https://en.wikipedia.org/wiki/Real-time_Transport_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol
file:///C:/Users/nigam/Desktop/retclfile/New%20folder/thesis/Transmission%20Control%20Protocol%20-%20Wikipedia,%20the%20free%20encyclopedia.htm%23cite_note-comer-2
file:///C:/Users/nigam/Desktop/retclfile/New%20folder/thesis/Transmission%20Control%20Protocol%20-%20Wikipedia,%20the%20free%20encyclopedia.htm%23cite_note-comer-2
https://en.wikipedia.org/wiki/Internet_Layer
https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/Transport_Layer
https://en.wikipedia.org/wiki/Internet_socket
https://en.wikipedia.org/wiki/State_%28computer_science%29
file:///C:/Users/nigam/Desktop/retclfile/New%20folder/thesis/Transmission%20Control%20Protocol%20-%20Wikipedia,%20the%20free%20encyclopedia.htm%23cite_note-11

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

277

ESTABLISHED

(both server and client) represents an open

connection, data received can be delivered to the

user. The normal state for the data transfer phase

of the connection.

FIN-WAIT-1

(both server and client) represents waiting for a

connection termination request from the remote

TCP, or an acknowledgment of the connection

termination request previously sent.

FIN-WAIT-2

(both server and client) represents waiting for a

connection termination request from the remote

TCP.

CLOSE-WAIT

(both server and client) represents waiting for a

connection termination request from the local

user.

CLOSING

(both server and client) represents waiting for a

connection termination request acknowledgment

from the remote TCP.

LAST-ACK

(both server and client) represents waiting for an

acknowledgment of the connection termination

request previously sent to the remote TCP

(which includes an acknowledgment of its

connection termination request).

TIME-WAIT

(either server or client) represents waiting for

enough time to pass to be sure the remote TCP

received the acknowledgment of its connection

termination request. [According to RFC 793 a

connection can stay in TIME-WAIT for a

maximum of four minutes known as two MSL

(maximum segment lifetime).]

CLOSED

(both server and client) represents no connection

state at all.

B. Connection Establishment

To establish a connection, TCP uses a three-way

handshake. Before a client attempts to connect with a

server, the server must first bind to and listen at a port to

open it up for connections: this is called a passive

open.[7] Once the passive open is established, a client

may initiate an active open. To establish a connection,

the three-way (or 3-step) handshake occurs:

1. SYN: The active open is performed by the client

sending a SYN to the server. The client sets the

segment's sequence number to a random value A.

2. SYN-ACK: In response, the server replies with a

SYN-ACK. The acknowledgment number is set to

one more than the received sequence number i.e.

A+1, and the sequence number that the server

chooses for the packet is another random number, B.

3. ACK: Finally, the client sends an ACK back to the

server. The sequence number is set to the received

acknowledgement value i.e. A+1, and the

acknowledgement number is set to one more than

the received sequence number i.e. B+1.

Figure 1 : Communication Using Ack From Sender And

Receiver

C. Congestion Control

The final main aspect of TCP is congestion control. TCP

uses a number of mechanisms to achieve high

performance and avoid congestion collapse, where

network performance can fall by several orders of

magnitude. These mechanisms control the rate of data

entering the network, keeping the data flow below a rate

that would trigger collapse. They also yield an

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

278

approximately max-min fair allocation between

flows.[13]

Acknowledgments for data sent, or lack of

acknowledgments, are used by senders to infer network

conditions between the TCP sender and receiver.

Coupled with timers, TCP senders and receivers can

alter the behavior of the flow of data. This is more

generally referred to as congestion control and/or

network congestion avoidance.

Modern implementations of TCP contain four

intertwined algorithms: Slow-start, congestion

avoidance, fast retransmit, and fast recovery (RFC

5681).

In addition, senders employ a retransmission timeout

(RTO) that is based on the estimated round-trip time (or

RTT) between the sender and receiver, as well as the

variance in this round trip time. The behavior of this

timer is specified in RFC 6298. There are subtleties in

the estimation of RTT. For example, senders must be

careful when calculating RTT samples for retransmitted

packets; typically they use Karn's Algorithm or TCP

timestamps (see RFC 1323). These individual RTT

samples are then averaged over time to create a

Smoothed Round Trip Time (SRTT) using Jacobson's

algorithm. This SRTT value is what is finally used as the

round-trip time estimate.

Enhancing TCP to reliably handle loss, minimize errors,

manage congestion and go fast in very high-speed

environments are ongoing areas of research and

standards development. As a result, there are a number

of TCP congestion avoidance algorithm variations.

1) Maximum Segment Size

The maximum segment size (MSS) is the largest amount

of data, specified in bytes, that TCP is willing to receive

in a single segment. For best performance, the MSS

should be set small enough to avoid IP fragmentation,

which can lead to packet loss and excessive

retransmissions. To try to accomplish this, typically the

MSS is announced by each side using the MSS option

when the TCP connection is established, in which case it

is derived from the maximum transmission unit (MTU)

size of the data link layer of the networks to which the

sender and receiver are directly attached. Furthermore,

TCP senders can use path MTU discovery to infer the

minimum MTU along the network path between the

sender and receiver, and use this to dynamically adjust

the MSS to avoid IP fragmentation within the

network.[15]

MSS announcement is also often called "MSS

negotiation". Strictly speaking, the MSS is not

"negotiated" between the originator and the receiver,

because that would imply that both originator and

receiver will negotiate and agree upon a single, unified

MSS that applies to all communication in both directions

of the connection. In fact, two completely independent

values of MSS are permitted for the two directions of

data flow in a TCP connection.
[17]

 This situation may

arise, for example, if one of the devices participating in a

connection has an extremely limited amount of memory

reserved (perhaps even smaller than the overall

discovered Path MTU) for processing incoming TCP

segments.[4]

2) Selective Acknowledgments

Relying purely on the cumulative acknowledgment

scheme employed by the original TCP protocol can lead

to inefficiencies when packets are lost. For example,

suppose 10,000 bytes are sent in 10 different TCP

packets, and the first packet is lost during transmission.

In a pure cumulative acknowledgment protocol, the

receiver cannot say that it received bytes 1,000 to 9,999

successfully, but failed to receive the first packet,

containing bytes 0 to 999. Thus the sender may then

have to resend all 10,000 bytes.

To alleviate this issue TCP employs the selective

acknowledgment (SACK) option, defined in RFC 2018,

which allows the receiver to acknowledge discontinuous

blocks of packets which were received correctly, in

addition to the sequence number of the last contiguous

byte received successively, as in the basic TCP

acknowledgment. The acknowledgement can specify a

number of SACK blocks, where each SACK block is

conveyed by the starting and ending sequence numbers

of a contiguous range that the receiver correctly

received. In the example above, the receiver would send

SACK with sequence numbers 1000 and 9999. The

sender would accordingly retransmit only the first

packet (bytes 0 to 999).

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

279

A TCP sender can interpret an out-of-order packet

delivery as a lost packet. If it does so, the TCP sender

will retransmit the packet previous to the out-of-order

packet and slow its data delivery rate for that

connection. The duplicate-SACK option, an extension to

the SACK option that was defined in RFC 2883, solves

this problem. The TCP receiver sends a D-ACK to

indicate that no packets were lost, and the TCP sender

can then reinstate the higher transmission-rate.

The SACK option is not mandatory, and comes into

operation only if both parties support it. This is

negotiated when a connection is established. SACK uses

the optional part of the TCP header (see TCP segment

structure for details). The use of SACK has become

widespread — all popular TCP stacks support it.

Selective acknowledgment is also used in Stream

Control Transmission Protocol (SCTP).

3) Window Scaling

Main article: TCP window scale option For more

efficient use of high bandwidth networks, a larger TCP

window size may be used. The TCP window size field

controls the flow of data and its value is limited to

between 2 and 65,535 bytes.

Since the size field cannot be expanded, a scaling factor

is used. The TCP window scale option, as defined in

RFC 1323, is an option used to increase the maximum

window size from 65,535 bytes to 1 gigabyte. Scaling up

to larger window sizes is a part of what is necessary for

TCP tuning.[4]

The window scale option is used only during the TCP 3-

way handshake. The window scale value represents the

number of bits to left-shift the 16-bit window size field.

The window scale value can be set from 0 (no shift) to

14 for each direction independently. Both sides must

send the option in their SYN segments to enable window

scaling in either direction.[5]

Some routers and packet firewalls rewrite the window

scaling factor during a transmission. This causes sending

and receiving sides to assume different TCP window

sizes. The result is non-stable traffic that may be very

slow. The problem is visible on some sites behind a

defective router.
[18]

D. Drop Tail

Tail Drop, or Drop Tail, is a very simple queue

management algorithm used by Internet routers, e.g. in

the network schedulers, and network switches to decide

when to drop packets. In contrast to the more complex

algorithms like RED and WRED, in Tail Drop the traffic

is not differentiated. Each packet is treated identically.

With tail drop, when the queue is filled to its maximum

capacity, the newly arriving packets are dropped until

the queue has enough room to accept incoming

traffic.[5]

The name arises from the effect of the policy on

incoming datagrams. Once a queue has been filled, the

router begins discarding all additional datagrams, thus

dropping the tail of the sequence of datagrams. The loss

of datagrams causes the TCP sender to enter slow-start,

which reduces throughput in that TCP session until the

sender begins to receive acknowledgements again and

increases its congestion window. A more severe problem

occurs when datagrams from multiple TCP connections

are dropped, causing global synchronization; i.e. all of

the involved TCP senders enter slow-start.[5] This

happens because, instead of discarding many segments

from one connection, the router would tend to discard

one segment from each connection.

III. RESULTS AND DISCUSSION

SOURCE CODE

#-------Event scheduler object creation--------#

set ns [new Simulator]

#----------creating nam objects----------------#

set nf [open RandomTx.nam w]

$ns namtrace-all $nf

#Open the trace file

set nt [open RandomTx.tr w]

$ns trace-all $nt

set proto rlm

#------------COLOR DESCRIPTION---------------#

$ns color 1 dodgerblue

$ns color 2 red

$ns color 3 cyan

$ns color 4 green

$ns color 5 yellow

$ns color 6 black

$ns color 7 magenta

$ns color 8 gold

$ns color 9 red

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

280

--------- CREATING SENDER - RECEIVER - ROUTER NODES-

----------#

set C(1) [$ns node]

set C(2) [$ns node]

set C(3) [$ns node]

set C(4) [$ns node]

set R(1) [$ns node]

set R(2) [$ns node]

set R(3) [$ns node]

set R(4) [$ns node]

set ROU(1) [$ns node]

set ROU(2) [$ns node]

set ROU(3) [$ns node]

--------------CREATING DUPLEX LINK -----------------------#

$ns duplex-link $C(1) $ROU(1) 1Mb 10ms DropTail

$ns duplex-link $C(2) $ROU(1) 500Kb 10ms DropTail

$ns duplex-link $C(3) $ROU(1) 750Kb 10ms DropTail

$ns duplex-link $C(4) $ROU(2) 1Mb 10ms DropTail

$ns duplex-link $R(1) $ROU(1) 1Mb 10ms DropTail

$ns duplex-link $R(2) $ROU(1) 1Mb 10ms DropTail

$ns duplex-link $R(3) $ROU(1) 1Mb 10ms DropTail

$ns duplex-link $R(4) $ROU(3) 1Mb 10ms DropTail

$ns duplex-link $ROU(2) $ROU(1) 1Mb 10ms DropTail

$ns duplex-link $ROU(2) $ROU(3) 1Mb 10ms DropTail

$ns duplex-link $ROU(1) $ROU(3) 1Mb 10ms DropTail

#-------------QUEUE SIZE DESCRIPTION---------------#

$ns queue-limit $ROU(1) $ROU(2) 18

$ns queue-limit $ROU(1) $ROU(3) 18

$ns queue-limit $ROU(2) $ROU(1) 20

$ns queue-limit $ROU(3) $ROU(1) 20

#-----------CREATING ORIENTATION -------------------------#

$ns duplex-link-op $C(1) $ROU(1) orient down

$ns duplex-link-op $C(2) $ROU(1) orient down-right

$ns duplex-link-op $C(3) $ROU(1) orient down-left

$ns duplex-link-op $C(4) $ROU(2) orient up

$ns duplex-link-op $R(1) $ROU(1) orient up

$ns duplex-link-op $R(2) $ROU(1) orient up-right

$ns duplex-link-op $R(3) $ROU(1) orient up-left

$ns duplex-link-op $R(4) $ROU(3) orient down

$ns duplex-link-op $ROU(1) $ROU(2) orient down-right

$ns duplex-link-op $ROU(3) $ROU(2) orient down-right

--------------LABELLING -----------------------------#

$ns at 0.0 "$C(1) label CL1"

$ns at 0.0 "$C(2) label CL2"

$ns at 0.0 "$C(3) label CL3"

$ns at 0.0 "$C(4) label CL4"

$ns at 0.0 "$R(1) label RC1"

$ns at 0.0 "$R(2) label RC2"

$ns at 0.0 "$R(3) label RC3"

$ns at 0.0 "$R(4) label RC4"

$ns at 0.0 "$ROU(1) label ROU1"

$ns at 0.0 "$ROU(2) label ROU2"

$ns at 0.0 "$ROU(3) label ROU3"

--------------- CONFIGURING NODES -----------------#

$ROU(1) shape square

$ROU(2) shape square

$ROU(3) shape square

----------------QUEUES POSITIONING AND ESTABLISHMENT

-------------#

$ns duplex-link-op $ROU(2) $ROU(1) queuePos 0.1

#$ns duplex-link-op $ROU(2) $C(5) queuePos 0.1

$ns duplex-link-op $ROU(3) $ROU(1) queuePos 0.1

#-----SETTING IDENTIFICATION COLORS TO ROUTER-

LINKS---------------#

 $ns duplex-link-op $ROU(1) $ROU(2) color cyan

$ns duplex-link-op $ROU(1) $ROU(3) color cyan

$ns duplex-link-op $ROU(2) $ROU(3) color cyan

----------------ESTABLISHING COMMUNICATION -------------#

#--------------TCP CONNECTION BETWEEN NODES---------------#

$ns at 0.0 "Tranmission"

proc Tranmission {} {

 global C ROU R ns

 set now [$ns now]

 set time 0.75

 set x [expr round(rand()*4)];if {$x==0} {set x 2}

 set y [expr round(rand()*4)];if {$y==0} {set y 3}

 set tcp1 [$ns create-connection TCP $C($x) TCPSink $R($y) 1]

 $ns at $now "$ns trace-annotate \"Time: $now Pkt Transfer

between Client($x) Receiver($y)..\""

 $tcp1 set class_ 1

 $tcp1 set maxcwnd_ 16

 $tcp1 set packetsize_ 4000

 $tcp1 set fid_ 1

 set ftp1 [$tcp1 attach-app FTP]

 $ftp1 set interval_ .005

 $ns at $now "$ftp1 start"

 $ns at [expr $now+$time] "$ftp1 stop"

 $ns at [expr $now+$time] "Tranmission"

}

 #---------finish procedure--------#

 proc finish {} {

 global ns nf nt nf1

 $ns flush-trace

 close $nf

 puts "running nam..."

 exec nam RandomTx.nam &

 exit 0

 }

 #Calling finish procedure

$ns at 20.0 "finish"

$ns run

Figure 2 : Snapshot of the Project

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

281

IV. CONCLUSION

In this paper implementation is done using network

simulator 2 , to show that how to minimize the cost

between 2 nodes doing communication cost. Here we

create new technique using merger of three algorithm

such as droptail mechanism , congestion window and

TCP Connection (SYN-ACK data FIN Sequence). This

paper summarizes to measure the performance of TCP

and its Simulations generated with the help of ns2

software. Several simulations have been run with Ns2 in

order to acquire a better understanding of these

parameters .It shows that ns2 is a perfect tool for

achieving such goal.

V. REFERENCES

[1] Kompella, K., Rekhter, Y., Berger, L., Link Bundling in MPLS

Tra_c Engineering (TE) IETF Request for Comments: 4201,

2005.

[2] Vasseur, JP., Leroux, JL., Yasukawa, S., Previdi, S., Psenak, P.,

Mabbey, P.Routing Extensions for Discovery of Multiprotocol

(MPLS) Label Switch Router(LSR) Traffic Engineering (TE)

Mesh Membership IETF Request for Comments:4972, 2007

[3] Andersson, L., Asati, R., Multiprotocol Label Switching

(MPLS) Label Stack Entry: "EXP" Field Renamed to "Tra_c

Class" Field. IETF Request for Comments:5462, 2009.

[4] Bhatia, M., Jakma, P., Advertising Equal Cost Multipath routes

in BGP, draft-bhatia-ecmp-routes-in-bgp-02.txt IETF Internet

Draft, 2006.

[5] Lin, W., Liu, B., Tang, Y., Tra_c Distribution over Equal-Cost-

Multi-Pathsusing LRU-based Caching with Counting Scheme

IEEE AINA, 2006.

[6] Martin, R., Menth, M., Hemmkeppler, M., Accuracy and

Dynamics of Hash-Based Load Balancing Algorithms for

Multipath Internet Routing. IEEE Conference on Broadband

Communications, Networks and Systems, 2006.

[7] Kandula, S., Katabi, D., Sinha, S., Berger, A., Dynamic Load

Balancing With-out Packet Reordering ACM SIGCOMM

Computer Communication Review 54 Volume 37, Number 2,

2007.

[8] Balon, S., Skivee, F., Leduc, G., How Well do Tra_c

Engineering Objective Functions Meet TE Requirements? IFIP

Networking, LNCS 3976, pp. 75{86, 2006.

[9] Lada A. Adamic, Rajan M. Lukose, Bernardo Huberman, and

Amit R. Puniyani Search in Power-Law Networks, Phys. Rev.

E, 64 46135 (2011)

[10] Dejan Kostic, Adolfo Rodriguez, Jeannie Albrecht, and Amin

Vahdat, Bullet: High Bandwidth Data Dissemination Using an

Overlay Mesh, In Proc. ACM SOSP 2013

[11] Russ Cox, Frank Dabek, Frans Kaashoek, Jinyang Li, and

Robert Morris Practical, Distributed Network Coordinates

HotNets 2013

[12] Ayalvadi J. Ganesh, Anne-Marie Kermarrec, Laurent

Massoulie, SCAMP: peer-to-peer lightweight membership

service for large-scale group communication, In Proc. 3rd Intnl.

Wshop Networked Group Communication (NGC’01), pages

44–55. LNCS 2233, Springer, 2010

[13] Ayalvadi J. Ganesh, Anne-Marie Kermarrec, Laurent Massouli:

Peer-to-Peer Membership Management for Gossip-Based

Protocols. IEEE Trans. Computers 52(2):139-149 (2013)

[14] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Searchand

replication in unstructured peer-to-peer networks In ICS’02,

New York, USA, June 2012

[15] Christos Gkantsidis, Milena Mihail, and Amin Saberi, Random

Walks in Peer-to-Peer Networks, to appear in IEEE Infocom

2014

[16] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham,

and Scott Shenker, Making Gnutella-like P2P Systems Scalable,

In Proc. ACM SIGCOMM 2003, Karlsruhe, Germany, Aug

2013.

[17] C. Law and K.-Y. Siu, Distributed construction of random

expander networks, In Proc. IEEE Infocom 2013

[18] Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal,

Building low-diameter p2p networks, In STOC 2011, Crete,

Greece, 2011

[19] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong, Freenet: A

distributed anonymous information storage and retrieval system,

In Proc. International Workshop on Design Issues in Anonymity

and Unobservability, volume 2012 of LNCS, pages 46–66.

Springer-Verlag, 2012

[20] Ziv Bar-Yossef, Alexander Berg, Steve Chien, Jittat

Fakcharoenphol, and Dror Weitz, Approximating Aggregate

Queries about Web Pages via Random Walks, In Proc.VLDB

2014.

VI. AUTHOR’S PROFILE

Dr.Rajdev Tiwari having work
experience of more than 16yr.
Completed phd from Computer
Science in 2012 from Dr. B.R
ambedkar University AGRA.
Completed Master of Computer
Application in 2005 from Indra Gandhi
National Open University. Also
completed Master of Science in 1997
from Dr. Rammanohar Lohia Awadh

University Faizabad

Prer na Trivedi persuing M.tech from

Computer Science in 2015 from

Noida Institute of engg. &

Technology, Greater noida.

Completed B.tech in Information

Technology in 2012 from B.S.A

college of engg. & Technology. My

areas of interest are Computer

Network and Operating System.

